Recitation 13:
Reinforcement Learning

Ken, Bhuvan

Reinforcement Learning

Learning Paradigms in Machine Learning:

e Supervised Learning
e Unsupervised Learning
e Reinforcement Learning

Reinforcement Learning

Learning to make decisions

AGENT ENVIRONMENT
-State s € &

- Take action a ¢ A

-Get reward ‘
-Newstate s' € S

Reinforcement Learning: Applications

e Games, Robotics, Control, Computer Vision, NLP ...

e e

*0: AlphaGo

Markov Decision Process

S: finite state space

A: finite action space

P: state transition model: p(s’|s, a)
R: reward model: r(s, a, s’)

Value Function, Q Function and Bellman
Equation
What is a value function?

e Determines how valuable a given state is, for the agent.
e The value function depends on the policy using which the agent performs actions
e Thevalue at a particular state using a policy = is given by:

T
VT(s) =]E[Z v~ lr] VseS
i=1

e Among all value-functions, there exists an optimal value function whose value is greater that other
functions for all states. The optimal policy m* corresponds to the optimal value

V*(s) =maxV7(s) VseS " =arg max V"™ (s) Vse€S

Value Function, Q Function and Bellman
Equation
What is the Q-value function?

e Determines how valuable taking an action ais, from a given state s

e V*(s) can be obtained by finding the maximum over all possible Q*(s,a) values
e The Q*(s,a) is equal to the summation of immediate reward after performing action a while in state

s and the discounted expected future reward after transition to a next state s
e |f we know the optimal Q-function we can extract the optimal policy by choosing the action that
maximises Q for a state s

Value Function, Q Function and Bellman
Equation

The Bellman Equation:

Q*(s,;a) = R(s,a) + yEs [V*(s")]
Q*(s,a) = R(s,a) +7 Y _ p(s'|s,a)V*(s)

s’eS
Since,

V*(S) = max Q*(s,a)

V*(S) = max R(s,a) +~ Zp(s’|s, a)V*(s)

s’eS

Value Iteration

Computed the optimal state value function by improving the value of V(s) iteratively from a
random start value

Repeatedly updates Q(s,a) and V(s) until convergence and it is guaranteed to converge to optimal
values.

Initialize V (s) to arbitrary values
Repeat

Forallse S
Forallae A
Q(s,a) — Elri|s,al +y dgesP(s'|s,a)V(s)
V(s) — max, Q(s,a)
Until V(s) converge

Policy Iteration

In value iteration, since the agent is optimising for the optimal policy, it might converge before

value function.
In Policy iteration, instead of repeatedly improving the value function, the policy is redefined at

each step and the value is computed until convergence.

Initialize a policy 1t arbitrarily
Repeat
m—T1
Compute the values using 1T by
solving the linear equations
V(s) = Elrls, mw(s}] + ¥y .o s P(s'|s, ®(s)VT(s")
Improve the policy at each state
' (s) — argmaxy (E[r|s,al + y D gecsP(s'|s,a)VT(s"))
Until T = 1’

Q Learning

e Policy and Value iteration can be used when the agent has prior knowledge about the effects
of its actions and the environment (offline planning)

e What if the agent only knows a set of possible states and actions and can observe the
environment current state?

o The agent must actively learn through its interactions with the environment
e Q-Learning a model-free learning algorithm that does not assume anything about the state-

transition or rewards
e Q-learningtries to approximate the Q value of state-action pairs from the samples of Q(s,a)
that were observed during the interaction with the environment.

Deep Q Learning

Why deep Q learning?

e Ifthe number of actions and states in an
environment are huge, tabulation becomes
cumbersome due to both memory and time
constraints

e Neural models can be used to approximate Q-values
instead

e Thestateis given as the input and the Q-value of all
possible actions is generated as the output

I

[-

Q
Stato-Action Value

Q Learning

ST N
Xo0XH0

KO \0»
RIOLR
SBA

v

Deep Q Learning

Deep Q Learning

~

What happens in DQNs?

QO(s.a: 0;)

Target Prediction

r+ymax Q(s'.a’;0;")
a

R

e The past experiences are stored in a memory buffer and the next
action is predicted by the Q network
e Lossiscalculated as the mean squared error of the predicted Q

Parameter update at every

value and a target Q value (Q*) 9’ IEEN 0
e For calculating the target Q value we can use a separate target e
. Target Network Prediction Network
network that can reduce divergence

e Target network has the same architecture as the Q-value
prediction network but with the parameters frozen

e Forevery x iterations we copy the parameters from the prediction
network to the target network Input

e This stabilizes training and reduces variability

Deep Q Learning

DQN steps summarized:

e Collect transitions from the environment to train the DQN.

e Select an action using the Epsilon-Greedy policy, i.e., select a random action versus maximum Q
value action with a probability epsilon.

e Performthe action in a state s and move to a new state s’ and store this transition in the memory
buffer <s,a,r,s’>

e Sample a batch of transitions from the replay buffer and calculate the loss

e Perform a gradient descent with respect to the actual network parameters to minimise the loss

e After every x steps copy actual network weights to the target network weights and repeat this for
M episodes

