
Recitation 13:
Reinforcement Learning
Ken, Bhuvan

Reinforcement Learning

Learning Paradigms in Machine Learning:

● Supervised Learning
● Unsupervised Learning
● Reinforcement Learning

Reinforcement Learning

Learning to make decisions

Reinforcement Learning: Applications
● Games, Robotics, Control, Computer Vision, NLP ...

Markov Decision Process
● S: finite state space
● A: finite action space
● P: state transition model: p(s’|s, a)
● R: reward model: r(s, a, s’)

Value Function, Q Function and Bellman
Equation
What is a value function?

● Determines how valuable a given state is, for the agent.

● The value function depends on the policy using which the agent performs actions

● The value at a particular state using a policy 𝛑 is given by:

● Among all value-functions, there exists an optimal value function whose value is greater that other

functions for all states. The optimal policy 𝛑* corresponds to the optimal value�

Value Function, Q Function and Bellman
Equation
What is the Q-value function?

● Determines how valuable taking an action a is, from a given state s

● V*(s) can be obtained by finding the maximum over all possible Q*(s,a) values
● The Q*(s, a) is equal to the summation of immediate reward after performing action a while in state

s and the discounted expected future reward after transition to a next state s'.

● If we know the optimal Q-function we can extract the optimal policy by choosing the action that

maximises Q for a state s

Value Function, Q Function and Bellman
Equation
The Bellman Equation:

Value Iteration

● Computed the optimal state value function by improving the value of V(s) iteratively from a

random start value

● Repeatedly updates Q(s,a) and V(s) until convergence and it is guaranteed to converge to optimal

values.

Policy Iteration

● In value iteration, since the agent is optimising for the optimal policy, it might converge before

value function.

● In Policy iteration, instead of repeatedly improving the value function, the policy is redefined at

each step and the value is computed until convergence.

.

Q Learning

● Policy and Value iteration can be used when the agent has prior knowledge about the effects

of its actions and the environment (offline planning)

● What if the agent only knows a set of possible states and actions and can observe the

environment current state?

○ The agent must actively learn through its interactions with the environment
● Q-Learning a model-free learning algorithm that does not assume anything about the state-

transition or rewards

● Q-learning tries to approximate the 2�WBMVF�PG�state-action pairs from the samples of Q(s,a)

that were observed during the interaction with the environment.

Deep Q Learning

Why deep Q learning?

● If the number of actions and states in an

environment are huge, tabulation becomes

cumbersome due to both memory and time

constraints

● Neural models can be used to approximate Q-values

instead

● The state is given as the input and the Q-value of all

possible actions is generated as the output

Deep Q Learning

What happens in DQNs?

● The past experiences are stored in a memory buffer and the next
action is predicted by the Q network

● Loss is calculated as the mean squared error of the predicted Q
value and a target Q value (Q*)

● For calculating the target Q value we can use a separate target
network that can reduce divergence

● Target network has the same architecture as the Q-value
prediction network but with the parameters frozen

● For every x iterations we copy the parameters from the prediction
network to the target network

● This stabilizes training and reduces variability

Deep Q Learning

DQN steps summarized:

● Collect transitions from the environment to train the DQN.

● Select an action using the Epsilon-Greedy policy, i.e., select a random action versus maximum Q

value action with a probability epsilon.

● Perform the action in a state s and move to a new state s’ and store this transition in the memory

buffer <s,a,r,s’>

● Sample a batch of transitions from the replay buffer and calculate the loss

● Perform a gradient descent with respect to the actual network parameters to minimise the loss

● After every x steps copy actual network weights to the target network weights and repeat this for

M episodes

